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Different Kinds of Learning

• Supervised Learning
• Data: 𝑥1,  𝑦1 , 𝑥2,  𝑦2 , ⋯

• Semi-supervised Learning
• Data: 𝑥1,  𝑦1 , 𝑥2,  𝑦2 , ⋯ , 𝑥𝑁+1, ? , 𝑥𝑁+2, ? ⋯

• Unsupervised Learning
• Data: 𝑥1, ? , 𝑥2, ? ,⋯

• Hidden variable learning
• Data: 𝑥1,  𝑦1 , 𝑥2,  𝑦2 , ⋯ Some useful 

information is hidden.ℎ1 ℎ2



Outline

Verifying the correctness

Structured SVM with Hidden Information

General Framework

Example Applications for Hidden Variable Learning 



Example Applications for 
Hidden Variable Learning 



Example Applications

• Sentiment Analysis: Automatically identify a movie 
review is positive or negative

Collecting documents about reviewing  movies 

Positive (正雷)

Negative (負雷)

Positive (正雷)

看了這部電影覺
得很高興 …….𝑥1:

這部電影太糟了
…….𝑥2:

這部電影很
棒 …….

𝑥3:

 𝑦1:

 𝑦2:

 𝑦3:

This is only an ideal case.



Example Applications

• Sentiment Analysis: Automatically identify a movie 
review is positive or negative

我很高興可以跟鄉
民分享我的心得
……..
我覺得這部電影太
糟了
……..

Only part of the 
document is related 
to movie review

Negative (負雷)

我很高興可以跟鄉
民分享我的心得
……..
我覺得這部電影太
糟了
……..

Which parts are related to 
movie is hidden information.

Filter out the irrelevant part



Example Applications

• Summarization: Given a long document, select a 
set of sentences to form a compact version

…

Text document

paragraph paragraph paragraph

Lecture Recording

For speech, the paragraph boundaries are hidden.

Select the whole paragraphs to make readable summaries 

sentence



Example Applications

x:

Phoneme or state of each frame is given.

eeey: a a a b b c c c ddd e

The training data in your homework …

Speech Recognition



Example Applications

Speech Recognition

In the real world …

x:

y: a b c d e The alignment between 
phonemes/states and 

acoustic features is hidden.

DNNAlignment



Example Applications

The word alignment of  
the sentence pairs is 
hidden.

Machine Translation

https://buffy.eecs.berkeley.edu/PHP/r
esabs/resabs.php?f_year=2006&f_su
bmit=chapgrp&f_chapter=12

English French



There is a general 
framework.

Two Steps,
Three Questions



Two Steps

• Find function F

• 𝐹: 𝑋 × 𝑌 × 𝐻 → 𝑅

• 𝐹 𝑥, 𝑦, ℎ evaluate how compatible x, y and h is

Step 1: Training

• Given object x

•  𝑦 = 𝑎𝑟𝑔max
𝑦

max
ℎ

𝐹 𝑥, 𝑦, ℎ

•  𝑦 = 𝑎𝑟𝑔max
𝑦

 ℎ 𝐹 𝑥, 𝑦, ℎ

Step2: Inference (Testing)

Which one is 
more reasonable?



Three Problems

• Problem 1: Evaluation

• What does 𝑭 𝒙, 𝒚, 𝒉 look like?

• E.g. 𝐹 𝑥, 𝑦, ℎ = 𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

• Problem 2: Inference

•  𝑦 = 𝑎𝑟𝑔max
𝑦

max
ℎ

𝐹 𝑥, 𝑦, ℎ

•  𝑦 = 𝑎𝑟𝑔max
𝑦

 ℎ 𝐹 𝑥, 𝑦, ℎ

• Problem 3: Training

• Given 𝑥1,  𝑦1 , ⋯ 𝑥𝑛,  𝑦𝑛 , ⋯ 𝑥𝑁 ,  𝑦𝑁

• EM-like algorithm



Three Problems - Training

Initialize
𝐹 𝑥, 𝑦, ℎ

Given Training data: 𝑥1,  𝑦1 , ⋯ 𝑥𝑛,  𝑦𝑛 , ⋯ 𝑥𝑁,  𝑦𝑁

We know how to find 𝐹 𝑥, 𝑦, ℎ at least when it is linear. 

We have 𝑥1, ℎ1,  𝑦1 , ⋯ 𝑥𝑛, ℎ𝑛,  𝑦𝑛 , ⋯ 𝑥𝑁 , ℎ𝑁 ,  𝑦𝑁

Random?

Way 1. Find the most possible  ℎ𝑛

 ℎ𝑛 = argmax
ℎ

𝐹 𝑥𝑛,  𝑦𝑛, ℎ

Way 2. Find the probability 
distribution of ℎ𝑛



Structured SVM
with Hidden Information

Taking object detection as Example



Motivation

• An object can have more than one types

BicycleTrain

Haruhi

short hair long hair



Motivation

Type1. Short hair

𝑥1

 𝑦1  𝑦2

𝑥2

Type 2. Long hair

Because 𝜙 𝑥1,  𝑦1 and 𝜙 𝑥2,  𝑦2 can be very different

 It may be hard to use a single w to achieve the above goal

𝑤 ∙ 𝜙 𝑥1,  𝑦1 > 𝑤 ∙ 𝜙 𝑥1, 𝑦For ∀𝑦 ≠  𝑦1:

𝑤 ∙ 𝜙 𝑥2,  𝑦2 > 𝑤 ∙ 𝜙 𝑥2, 𝑦For ∀𝑦 ≠  𝑦2:

Original
Training:



Two Cases

• Involving object types into object detection

• Case 1

• The useful information is available on training 
data, only hidden in testing data

• Not too much difference from original 
structured SVM, extra efforts for labelling

• Case 2

• The information is hidden in both training and 
testing data

• What we really care about



Case 1: Two kinds of Objects?

• There are two kinds of objects to be detected:  
Haruhi_1 and Haruhi_2

Haruhi_1 Haruhi_2Haruhi_1

Haruhi_1Haruhi_1

Haruhi_2

Haruhi_2
Haruhi_2



Case 1: Two kinds of Objects?
Haruhi_1 Haruhi_2

𝐹1 𝑥, 𝑦 = 𝑤1 ∙ 𝜙 𝑥, 𝑦

Evaluation:

𝐹2 𝑥, 𝑦 = 𝑤2 ∙ 𝜙 𝑥, 𝑦

Evaluation:

Training Target:

𝑤1 ∙ 𝜙 𝑥𝑛,  𝑦𝑛 > 𝑤1 ∙ 𝜙 𝑥𝑛, 𝑦

Training Target:

𝑤2 ∙ 𝜙 𝑥𝑛,  𝑦𝑛 > 𝑤2 ∙ 𝜙 𝑥𝑛, 𝑦

𝑥𝑛 𝑖𝑠 Haruhi_1 𝑥𝑛 𝑖𝑠 Haruhi_2



Case 1: Problematic Inference

• Now we have 𝑤1 for Haruhi_1 and 𝑤2 for Haruhi_2

• Inference:

 𝑦1 = argmax
𝑦∈𝕐

𝑤1∙𝜙(ݕ,ݔ)

If the Harihu in image is Haruhi_1:

 𝑦2 = argmax
𝑦∈𝕐

𝑤2∙𝜙(ݕ,ݔ)

If the Harihu in image is Haruhi_2:

Critical Problem: Given an input image, we do not 
know the Haruhi in the image is Haruhi_1 or Haruhi_2

Given an image x



Case 1: Problematic Inference

• Inference

…
…

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

Input

If we know its 
type 1

We don’t know the 
type of the input 
image actually.



Case 1: Problematic Inference

• Inference

…
…

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

…
…

𝑤2 ∙ 𝜙

𝑤2 ∙ 𝜙

𝑤2 ∙ 𝜙

Type 1



Case 1: Problematic Inference

• 𝑤1 and 𝑤2 are learned separately  

0.1 0.09

1000000 999999

𝑤1 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

𝑥𝑛 𝑖𝑠 Haruhi_1

𝑤1 ∙ 𝜙 𝑥𝑛, 𝑦

𝑤2 ∙ 𝜙 𝑥𝑛, 𝑦

>
>

𝑤1 and 𝑤2 should be 
learned jointly 

Training Target:

𝑤1 ∙ 𝜙 𝑥𝑛,  𝑦𝑛 > 𝑤1 ∙ 𝜙 𝑥𝑛, 𝑦

Training Target:

𝑤2 ∙ 𝜙 𝑥𝑛,  𝑦𝑛 > 𝑤2 ∙ 𝜙 𝑥𝑛, 𝑦

𝑥𝑛 𝑖𝑠 Haruhi_1

𝑥𝑛 𝑖𝑠 Haruhi_2



Case 1: Evaluation

𝐹 𝑥, 𝑦, ℎ = 𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

ℎ: type of Haruhi (type 1 or type 2) 

Ψ 𝑥, 𝑦, ℎ : a feature vector for x, y and type h

𝑤: a weight vector to be learned

Its length is twice of 𝜙 𝑥, 𝑦

Its length is twice of 𝑤1 or 𝑤2

𝐹 𝑥, 𝑦 = 𝑤1 ∙ 𝜙 𝑥, 𝑦

𝐹 𝑥, 𝑦 = 𝑤2 ∙ 𝜙 𝑥, 𝑦

For “type 1”,

For “type 2”,

=



Case 1: Evaluation

𝐹 𝑥, 𝑦, ℎ = 𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

𝑤 =
𝑤1

𝑤2

For “type 1”, F 𝑥, 𝑦, ℎ = 𝑤1 ∙ 𝜙 𝑥, 𝑦 + 𝑤2 ∙ 𝟎

For “type 2”, F 𝑥, 𝑦, ℎ = 𝑤1 ∙ 𝟎 + 𝑤2 ∙ 𝜙 𝑥, 𝑦

Ψ 𝑥, 𝑦, ℎ = "𝑡𝑦𝑝𝑒 1" =
𝜙 𝑥, 𝑦

𝟎

Ψ 𝑥, 𝑦, ℎ = "𝑡𝑦𝑝𝑒 2" =
𝟎

𝜙 𝑥, 𝑦



Case 1: Inference

Enumerate all possible y

…
…

…

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

𝑤1 ∙ 𝜙

Enumerate all possible y
…

…
…

𝑤2 ∙ 𝜙

𝑤2 ∙ 𝜙

𝑤2 ∙ 𝜙

Haruhi_1

𝑎𝑟𝑔max
𝑦

max
ℎ

𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

 𝑦 =



Case 1: Training

 𝑦 = 𝑎𝑟𝑔max
𝑦

max
ℎ

𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

 𝑦 = 𝑎𝑟𝑔max
𝑦

𝑤 ∙ 𝜙 𝑥, 𝑦

𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 − 𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

𝐶𝑛 = max
𝑦

𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ − 𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛

𝐶𝑛 = max
𝑦

max
ℎ

𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ − 𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛



𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

Case 1: Training

݊ܥ



−𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛

Case 1: Training

 ℎ𝑛 = “type 1”

݊ܥ

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ



Find 𝑤, 𝜀1, … , 𝜀𝑛, … , 𝜀𝑁 minimize:

Case 1: Training

𝑥1,  𝑦1,  ℎ1 , ⋯ , 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 , ⋯ , 𝑥𝑁,  𝑦𝑁,  ℎ𝑁Given training data:

1

2
𝑤 2 + 𝜆  

𝑛=1

𝑁

𝜀𝑛

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ ≥ ∆  𝑦𝑛, 𝑦 −𝜀𝑛

∀𝑛, ∀𝑦 ∈ 𝕐,∀ℎ ∈ ℍ

−𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ



Case 2: 
Training with Hidden Information

• The useful information are usually hidden

Type 1 Type 1

Type 1 Type 1

Type 2 Type 2

Type 2
Type 2

How to deal with hidden information with Structured SVM?



𝐹 𝑥, 𝑦, ℎ = 𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

Case 2: 
Training with Hidden Information

Evaluate the compatibility 
of x, y and h

 ℎ = 𝑎𝑟𝑔max
ℎ

𝑤 ∙ Ψ 𝑥,  𝑦, ℎ

Given x and  𝑦, find the most compatible h

𝑥1,  𝑦1 𝑥2,  𝑦2 𝑥3,  𝑦3 𝑥4,  𝑦4

Random initialized
𝑤 = 𝑤0

• No types? Try to generate ourselves



• No types? Try to generate ourselves

Case 2: 
Training with Hidden Information

For n = 1, …, 4:  ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤0 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

𝑥1,  𝑦1 𝑥2,  𝑦2 𝑥3,  𝑦3 𝑥4,  𝑦4

 ℎ1= type 1  ℎ2= type 2  ℎ3= type 1  ℎ4= type 2

Good guess? Of course not.

Because 𝑤0 is random



Case 2: 
Training with Hidden Information
• With the types we generate, we can find a w

1

2
𝑤 2 + 𝜆  

𝑛=1

4

𝜀𝑛

𝑥1,  𝑦1 𝑥2,  𝑦2 𝑥3,  𝑦3 𝑥4,  𝑦4

 ℎ1= type 1

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ ≥ ∆  𝑦𝑛, 𝑦 −𝜀𝑛

n = 1,… , 4, ∀𝑦 ∈ 𝕐,∀ℎ ∈ ℍ

 ℎ2= type 2  ℎ3= type 1  ℎ4= type 2

Find 𝑤, 𝜀1, 𝜀2, 𝜀3, 𝜀4 minimize:



Case 2: 
Training with Hidden Information

𝑥1,  𝑦1 𝑥2,  𝑦2 𝑥3,  𝑦3 𝑥4,  𝑦4

 ℎ1= type 1  ℎ2= type 2  ℎ3= type 1  ℎ4= type 2

Solving a QP
𝑤1

 ℎ3= type 2

Is 𝑤1 a good weight vector? Probably not

Train from random  ℎ

For n = 1, …, 4:  ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤1 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



Case 2: 
Training with Hidden Information

𝑥1,  𝑦1 𝑥2,  𝑦2 𝑥3,  𝑦3 𝑥4,  𝑦4

 ℎ1= type 1  ℎ2= type 2  ℎ3= type 1  ℎ4= type 2

Solving a QP
𝑤2

 ℎ3= type 2 ℎ2= type 1

IterativelyIs 𝑤2 better than 𝑤1? Yes

Use the new  ℎ
to solve the same 

QP again

(?)

For n = 1, …, 4:  ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤2 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



Case 2: 
Training with Hidden Information

 ℎ𝑛 = argmax
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

Find 𝑤, 𝜀1, ⋯ , 𝜀𝑁 minimize
1

2
𝑤 2 + 𝜆  

𝑛=1

𝑁

𝜀𝑛

Initialize 
w

Training data: 𝑥1,  𝑦1 , 𝑥2,  𝑦2 , ⋯ 𝑥𝑛,  𝑦𝑛 ⋯ 𝑥𝑁,  𝑦𝑁

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ ≥ ∆  𝑦𝑛, 𝑦 −𝜀𝑛

∀𝑟, ∀𝑦 ∈ 𝕐,∀ℎ ∈ ℍ

Summary

Cutting Plane Algorithm

Iteration in Iteration



Why we can get better 
weight vector after each 

iteration?

Warning of Math



Structured SVM

 

𝑛=1

𝑁

∆  𝑦𝑛,  𝑦𝑛

𝐶𝑛 ≥ ∆  𝑦𝑛,  𝑦𝑛

𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

Training data: 𝑥1,  𝑦1 , ⋯ 𝑥𝑛,  𝑦𝑛 ⋯ 𝑥𝑁 ,  𝑦𝑁

𝐶 =
1

2
𝑤 2 +  

𝑛=1

𝑁

𝐶𝑛

Minimizing cost

≥

What does the function Cn look like?

 𝑦 = 𝑎𝑟𝑔max
𝑦

𝑤 ∙ 𝜙 𝑥, 𝑦



𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛

Structured SVM

w

convex

∆  𝑦𝑛, 𝑦′ + 𝑤 ∙ 𝜙 𝑥𝑛,ݕ′

∆  𝑦𝑛, 𝑦′′ + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦′′



Structured SVM

w

convex

𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛



Structured SVM

convex

line

convex

convex line

convex

𝐶𝑛 = max
𝑦

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ 𝜙 𝑥𝑛, 𝑦 −𝑤 ∙ 𝜙 𝑥𝑛,  𝑦𝑛



Structured SVM

convexconvex

convex

𝐶 =
1

2
𝑤 2 +  

𝑛=1

𝑁

𝐶𝑛

There is no local minima 
for structured SVM.



Structured SVM 
with Hidden Information

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ

−max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

 

𝑛=1

𝑁

∆  𝑦𝑛,  𝑦𝑛

𝐶𝑛 ≥ ∆  𝑦𝑛,  𝑦𝑛

𝐶 =
1

2
𝑤 2 +  

𝑛=1

𝑁

𝐶𝑛

In each iteration, the 
following cost is smaller

≥

Training data: 𝑥1,  𝑦1 , ⋯ 𝑥𝑛,  𝑦𝑛 ⋯ 𝑥𝑁 ,  𝑦𝑁

 𝑦 = 𝑎𝑟𝑔max
𝑦

max
ℎ

𝑤 ∙ Ψ 𝑥, 𝑦, ℎ



Structured SVM 
with Hidden Information

h = “type 1”

h = “type 2”

݊ܥ

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ

−max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



Structured SVM 
with Hidden Information
• Cost function to be minimized

convex convex

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



Structured SVM 
with Hidden Information
• Cost function to be minimized

convex concave

+ =

?

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



w

𝐶𝑛 𝑤

Auxiliary function 𝐴 𝑤 at w0:

2. Upper bound of 𝐶𝑛 𝑤

3. Easy to be minimized 

w0w1

𝐴 𝑤1 < 𝐴 𝑤0

𝐶𝑛 𝑤1 < 𝐴 𝑤1

𝐶𝑛 𝑤1 < 𝐶𝑛 𝑤0

1. 𝐴 𝑤0 = 𝐶𝑛 𝑤0

convex concave

Minimum value of 𝐴 𝑤 is 
at w1

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



w

𝐶𝑛 𝑤

Another auxiliary function 𝐴 𝑤 at w1:

2. Upper bound of 𝐶𝑛 𝑤

3. Easy to be minimized 

w2

𝐴 𝑤2 < 𝐴 𝑤1

𝐶𝑛 𝑤2 < 𝐴 𝑤2

𝐶𝑛 𝑤2 < 𝐶𝑛 𝑤1

1. 𝐴 𝑤1 = 𝐶𝑛 𝑤1

Minimum value of 𝐴 𝑤 is 
at w2

Can only reach local minimum 

Find a w that can make 𝐶𝑛 𝑤
smaller at each iteration 

convex concave

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

w0w1



+

=

Auxiliary function 𝐴 𝑤
at w0:

2. Upper bound of 𝐶𝑛 𝑤

3. Easy to be minimized

1. 𝐴 𝑤0 = 𝐶𝑛 𝑤0

𝐶𝑛 𝑤

𝑤

𝑤 𝑤

w0

w0

convex

convex concave

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



What is the relation to 
the EM-like process?

Solving a QP

 ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

𝑤
to form the auxiliary function

𝑤

find the 
minimum value

After each iteration, the w obtained 
decrease the cost function



𝑤
to form the auxiliary function

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ = 1

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ = 2

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ = 1

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ = 2

𝑤

 ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

w0

convex concave

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ



𝑤
to form the auxiliary function

𝐴 𝑤 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛

 ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤0 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

w0

convex concave

𝐶𝑛 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

 ℎ𝑛 = 𝑎𝑟𝑔max
ℎ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛, ℎ

Minimizing A(w)



find the minimum value

Solving a QP

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ = −A 𝑤

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ + ∆  𝑦𝑛, 𝑦 ≥ −A 𝑤

∀𝑦 ∈ 𝕐, ∀ℎ ∈ ℍ

𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛 − 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ ≥ ∆  𝑦𝑛, 𝑦 − A 𝑤

∀𝑦 ∈ 𝕐, ∀ℎ ∈ ℍ

𝐴 𝑤 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛

𝐴 𝑤 = max
𝑦

max
ℎ

∆  𝑦𝑛, 𝑦 + 𝑤 ∙ Ψ 𝑥𝑛, 𝑦, ℎ −𝑤 ∙ Ψ 𝑥𝑛,  𝑦𝑛,  ℎ𝑛



End of Warning



Structured SVM 
with Hidden Information

Problem 1: 
Evaluation

Problem 2: 
Inference

Problem 3: 
Training

𝐹 𝑥, 𝑦, ℎ = 𝑤 ∙ Ψ 𝑥, 𝑦, ℎ

 𝑦 = 𝑎𝑟𝑔max
𝑦

max
ℎ

𝐹 𝑥, 𝑦, ℎ

EM-like algorithm

Find hidden 
information

Find model 
parameters



To Learn More …
• Framework

• Chun-Nam John Yu and Thorsten Joachims, ”Learning Structural SVMs with 
Latent Variables,” ICML 2009

• Video
• Wang, Yang, and Greg Mori. "Max-margin hidden conditional random fields 

for human action recognition," CVPR 2009
• Wang, Yang, and Greg Mori. "Hidden part models for human action 

recognition: Probabilistic versus max margin," Pattern Analysis and 
Machine Intelligence, IEEE Transactions, 2011

• Image
• Zhu, Long, et al. "Latent hierarchical structural learning for object 

detection."Computer Vision and Pattern Recognition (CVPR), 2010 IEEE 
Conference on. IEEE, 2010.

• Felzenszwalb, Pedro F., et al. "Object detection with discriminatively trained 
part-based models." Pattern Analysis and Machine Intelligence, IEEE 
Transactions on 32.9 (2010): 1627-1645.

• Language processing
• Sun, Xu, et al. "Latent Variable Perceptron Algorithm for Structured 

Classification," IJCAI. Vol. 9. 2009
• http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015/Structured%20Le

cture/Summarization%20Hidden_2.ecm.mp4/index.html



Appendix:
EM in one slide



EM in one slide

Problem 1: 
Evaluation

Problem 2: 
Inference

Problem 3: 
Training

𝐹 𝑥, 𝑦, ℎ = P 𝑥, 𝑦, ℎ

 𝑦 = 𝑎𝑟𝑔max
𝑦

 

ℎ

𝑃 𝑥, 𝑦, ℎ

Find hidden 
information

Find model 
parameters 𝑃 𝑥, 𝑦, ℎ = 𝑃 ℎ|𝑥, 𝑦 𝑃 𝑥, 𝑦

𝑃 ℎ|𝑥, 𝑦 =
𝑃 𝑥, 𝑦, ℎ

 ℎ 𝑃 𝑥, 𝑦, ℎ

Maximizing

 

𝑛=1

𝑁

 

ℎ

𝑃 𝑥𝑛, 𝑦𝑛, ℎ


